(南充)已知抛物线与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线()与抛物线相交于两点M(,),N(,)(),当最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.
如图,已知:=60°,=30°,=20°,求的度数。
尺规作图:已知:∠α,线段a, b 求作:△ABC,使∠A=, AB="a," AC=b。( 不写作法,保留痕迹,写出结论 )
解不等式(组)并把不等式组的解集在数轴上表示出来:(1)7x-2≥5x+2 ;(2)
如图,一个粒子在第一象限内及x轴,y轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位。(1)当粒子所在位置是(2,2)时,所经过的时间是 ;(2)在第2014分钟时,这个粒子所在位置的坐标是 。
甲、乙两站路程为360km,一列慢车从甲站开出,每小时行48km,一列快车从乙站开出,每小时行72km.(1)两车同时开出,相向而行,多少小时相遇?(2)若慢车先开出20分钟,快车再出发,两车同向而行,快车多少时间追上慢车?