如图,已知抛物线()与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.
如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE="2" cm,BD="3" cm,求线段BC的长.
如图,已知△ABC.(1)用直尺和圆规作角平分线AD.(2)用刻度尺作中线CE.
如图,在直角坐标系中,以点A(,0 )为圆心,以2为半径的圆与x轴相交于点B、C,与y轴相交于点D、E(1)若抛物线经过C、D两点,求抛物线的表达式,并判断点B是否在该抛物线上(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小(3)设Q为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形,若存在,求出点M的坐标;若不存在,说明理由
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价元/吨与采购量吨之间函数关系的图象如图中的折线段所示(不包含端点,但包含端点).(1)求与之间的函数关系式;(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润最大?最大利润是多少?
如图,已知A、B、C、D四点均在以BC为直径的⊙O上,AD∥BC,AC平分∠BCD,∠ADC=120°,BC=4.(1)求扇形ODC的面积;(2)求四边形ABCD的周长.