(巴中)如图,在平面直角坐标系xOy中,二次函数()的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.求证:FD2=FG·FE.
某工厂生产的某种产品按质量分为1 0个档次.第1档次(最低档次)的产品一天能生产7 6件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.
如图,矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)ΔABE与ΔADF相似吗?请说明理由. (2)若AB=6,AD=12,BE=8,求FD的长.
如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2). (1)请画出△ABC关于y轴对称的△A1B1C1; (2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
若x="0" 是关于x的一元二次方程 的一个解,求实数m的值和另一个根.