(本小题满分13分)在平面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与直线y =-x交于点B, 点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.
计算:.
两个全等的直角三角形ABC和DEF重叠在一起,其中AB=2,AC=1..固定△ABC不动,将△DEF进行如下操作:如图(1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,它的面积是否变化,如果不变请求出 其面积.如果变化,说明理由.如图(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明 理由.
如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A、C不重合)在AC边上,EF∥AB交BC于点F. 当△ECF的面积与四边形EABF的面积相等时,求CE的长 当△ECF的周长与四边形EABF的周长相等时,求CE的长 试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.
我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和鳜鱼.有关成本和销售额见下表:2011年,王大爷养殖甲鱼20亩,鳜鱼10亩.王大爷这一年共收益多少万元?(收益=销售额-成本)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和鳜鱼,计划投入成本不超过70万元,若每亩养殖的成本、销售额与2011年相同,要获得最大收益,则他应养殖甲鱼和鳜鱼各多少亩?已知甲鱼每亩需要饲料500 kg,鳜鱼每亩需要饲料700 kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次,王大爷原定的运输车辆每次可装载多少饲料?
如图,在梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.△EDM与△FBM相似吗?为什么?若DB=9,求BM的长