如图1,在平面直角坐标系中,抛物线交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.
如图所示,在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角a(0°<a<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点。(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长。
如图所示,在△BAC中,AB=AC,以AB为直径的⊙O交AB于点M,MN⊥AC于点N,(1)求证MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积。
如图,已知AB⊙O的直径,弦CD⊥AB,垂足为E,连AC、BC,若∠BAC=30°,CD=6cm,(1)求∠BCD度数;(2)求⊙O的直径。
如图,点AB在直线MN上,AB=11㎝,⊙A⊙B的半径均为1㎝,⊙A以每秒2㎝的速度自左向右运动,与此同时,⊙B的半径也不断增长,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0)(1)试写出点A,B之间距离d(cm)与时间t(s)之间的函数表达式(2)问点A出发后多少秒两圆相切?
如图所示,小英和小丽用两个转盘做“配紫色”游戏(红色 + 蓝色,配成紫色者胜),配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?用树状图或列表法加以分析,说明理由.