(·辽宁锦州)如图,在平面直角坐标系中,抛物线经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.(1)求该抛物线的解析式;(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.
已知二次函数.(1)证明:不论取何值,该函数图象与轴总有两个公共点;(2)若该函数的图象与轴交于点(0,5),求出顶点坐标,并画出该函数图象.
解下列一元二次方程:(1)(2)
化简:(≥0,≥0)
如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F.(1)若抛物线过点A、B、C, 求此抛物线的解析式;(2)求△OAE与△ODC重叠的部分四边形ODFE的面积;(3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.
如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.