(·辽宁丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
计算: 2 sin 60 ° + ( - 1 3 ) - 2 + ( π - 2020 ) 0 + | 2 - 3 | .
如图1,直线 y = x - 4 与 x 轴交于点 B ,与 y 轴交于点 A ,抛物线 y = - 1 2 x 2 + bx + c 经过点 B 和点 C ( 0 , 4 ) , ΔABO 沿射线 AB 方向以每秒 2 个单位长度的速度平移,平移后的三角形记为 ΔDEF (点 A , B , O 的对应点分别为点 D , E , F ) ,平移时间为 t ( 0 < t < 4 ) 秒,射线 DF 交 x 轴于点 G ,交抛物线于点 M ,连接 ME .
(1)求抛物线的解析式;
(2)当 tan ∠ EMF = 4 3 时,请直接写出 t 的值;
(3)如图2,点 N 在抛物线上,点 N 的横坐标是点 M 的横坐标的 1 2 ,连接 OM , NF , OM 与 NF 相交于点 P ,当 NP = FP 时,求 t 的值.
如图,四边形 ABCD 是正方形,点 F 是射线 AD 上的动点,连接 CF ,以 CF 为对角线作正方形 CGFE ( C , G , F , E 按逆时针排列),连接 BE , DG .
(1)当点 F 在线段 AD 上时.
①求证: BE = DG ;
②求证: CD - FD = 2 BE ;
(2)设正方形 ABCD 的面积为 S 1 ,正方形 CGFE 的面积为 S 2 ,以 C , G , D , F 为顶点的四边形的面积为 S 3 ,当 S 2 S 1 = 13 25 时,请直接写出 S 3 S 1 的值.
某服装厂生产 A 品种服装,每件成本为71元,零售商到此服装厂一次性批发 A 品牌服装 x 件时,批发单价为 y 元, y 与 x 之间满足如图所示的函数关系,其中批发件数 x 为10的正整数倍.
(1)当 100 ⩽ x ⩽ 300 时, y 与 x 的函数关系式为 .
(2)某零售商到此服装厂一次性批发 A 品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发 A 品牌服装 x ( 100 ⩽ x ⩽ 400 ) 件,服装厂的利润为 w 元,问: x 为何值时, w 最大?最大值是多少?
如图, BC 是 ⊙ O 的直径, AD 是 ⊙ O 的弦, AD 交 BC 于点 E ,连接 AB , CD ,过点 E 作 EF ⊥ AB ,垂足为 F , ∠ AEF = ∠ D .
(1)求证: AD ⊥ BC ;
(2)点 G 在 BC 的延长线上,连接 AG , ∠ DAG = 2 ∠ D .
①求证: AG 与 ⊙ O 相切;
②当 AF BF = 2 5 , CE = 4 时,直接写出 CG 的长.