某服装厂生产 A 品种服装,每件成本为71元,零售商到此服装厂一次性批发 A 品牌服装 x 件时,批发单价为 y 元, y 与 x 之间满足如图所示的函数关系,其中批发件数 x 为10的正整数倍.
(1)当 100 ⩽ x ⩽ 300 时, y 与 x 的函数关系式为 .
(2)某零售商到此服装厂一次性批发 A 品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发 A 品牌服装 x ( 100 ⩽ x ⩽ 400 ) 件,服装厂的利润为 w 元,问: x 为何值时, w 最大?最大值是多少?
如图,抛物线y=ax2+bx+3经过A(-1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.(1)求该抛物线的解析式.(2)在抛物线上是否存在一点N,使得|MN-ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.①求△COD的面积.②试判断直线CD与☉O的位置关系,并说明理由.(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.
为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?
在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)(1)请判断ED与AB的位置关系,并说明理由.(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.
已知关于x的方程(x-3)(x-2)-p2=0.(1)求证:方程总有两个不相等的实数根.(2)设方程的两根为x1,x2(x1<x2),则当0≤p<时,请直接写出x1和x2的取值范围.