某服装厂生产 A 品种服装,每件成本为71元,零售商到此服装厂一次性批发 A 品牌服装 x 件时,批发单价为 y 元, y 与 x 之间满足如图所示的函数关系,其中批发件数 x 为10的正整数倍.
(1)当 100 ⩽ x ⩽ 300 时, y 与 x 的函数关系式为 .
(2)某零售商到此服装厂一次性批发 A 品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发 A 品牌服装 x ( 100 ⩽ x ⩽ 400 ) 件,服装厂的利润为 w 元,问: x 为何值时, w 最大?最大值是多少?
解下列方程: (1); (2)(用配方法).
如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B. (1)求证:直线AE是⊙O的切线; (2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).
已知,如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE切⊙O于点D,且DE⊥MN于点E. (1)求证:AD平分∠CAM. (2)若DE=6,AE=3,求⊙O的半径.
已知:如图所示,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且.判断直线与的位置关系,并证明你的结论
已知:如图,点在的直径的延长线上,点在上,且,∠°. (1)求证:是的切线; (2)若的半径为2,求图中阴影部分的面积.