(·辽宁葫芦岛)如图,小岛A在港口B的北偏东50°方向,小岛C在港口B的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B出发向小岛A航行,经过5小时到达小岛A,这时测得小岛C在小岛A的北偏西70°方向,求小岛A距离小岛C有多少海里?(最后结果精确到1海里,参考数据:≈1.414,≈1.732)
问题探究: (一)新知学习: 圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上). (二)问题解决: 已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M. (1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长; (2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值; (3)若直径AB与CD相交成120°角. ①当点P运动到的中点P1时(如图二),求MN的长; ②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值. (4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.
已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点. (1)求抛物线y=ax2+bx+c的解析式; (2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等; (3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.
如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD. (1)求证:BE=CE; (2)试判断四边形BFCD的形状,并说明理由; (3)若BC=8,AD=10,求CD的长.
如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. (1)求对学校A的噪声影响最大时卡车P与学校A的距离; (2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB. (1)求证:∠ABC=∠EDC; (2)求证:△ABC≌△EDC.