下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
()(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(本小题满分12分) 已知函数是定义在实数集R上的奇函数,函数是区间上的减函数。 (I)求实数的值; (II)若对恒成立,求实数的取值范围; (III)讨论关于的方程的实根的个数
本小题满分12分) 已知数列的前n项和为且,且,数列满足且. (I)求数列的通项公式; (II)求证:数列为等比数列; (III)求数列前项和的最小值.
(本小题满分12分) 已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C:(p>0)的顶点关于直线l的对称点在该抛物的准线上. (Ⅰ)求抛物线C的方程; (Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m交直线OB于点N,若(O为原点,A、B异于原点),试求点N的轨迹方程.
(本小题满分12分) 如图,三棱柱的底面是边长为2的正三角形,且平面,是侧棱的中点,直线与侧面所成的角为45°. (Ⅰ)求二面角的余弦值; (Ⅱ)求点到平面的距离.
(本小题满分12分) 已知向量,,,且、、分别为的三边、、所对的角。 (Ⅰ)求角C的大小; (Ⅱ)若,,成等差数列,且,求边的长。