(本小题满分14分)已知命题抛物线的焦点在椭圆上.命题直线经过抛物线的焦点,且直线过椭圆的左焦点,是真命题.(Ⅰ)求直线的方程;(Ⅱ)直线与抛物线相交于、,直线、分别切抛物线于、,求、的交点的坐标.
已知函数,。(Ⅰ)若函数的图象在x=2处的切线的斜率为1,求实数的值; (Ⅱ)若有极值,求实数的取值范围和函数的值域;(Ⅲ)在(Ⅱ)的条件下,函数,证明:,,使得成立
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。(Ⅰ)求的周长(Ⅱ)求的长 (Ⅲ)若直线的斜率为1,求b的值。
如图,已知三棱锥,为中点,为的中点,且,.(I)求证:;(II)找出三棱锥中一组面与面垂直的位置关系,并给出证明(只需找到一组即可)
已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若不等式在上恒成立,求实数的取值范围.
已知某批零件共160个,按型号分类如下表:
用分层抽样的方法在该批零件中抽取一个容量为20的样本。(Ⅰ)应在A型零件中抽取多少个?并求每个A型零件被抽取的概率;(Ⅱ)现已抽取一个容量为20的样本,从该样本的A型和B型的零件中随机抽取2个,求恰有一个B型零件的概率