解方程:(每小题4分,共8分) (1); (2).
如图,在四边形ABCD中,∥,,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为。求CD的长;当四边形PBQD为平行四边形时,求四边形PBQD的周长;在点P、点Q的运动过程中,是否存在某一时刻,使得的面积为20,若存在,请求出所有满足条件的的值;若不存在,请说明理由。
阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”。如图(1)所示,矩形ABEF即为△ABC的“友好矩形”。显然,当△ABC是钝角三角形时,其“友好矩形”只有一个。仿照以上叙述,说明什么是一个三角形的“友好平行四边形”如图(2),若△ABC为直角三角形,且∠C=90°,在图(2)中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;若△ABC是锐角三角形,且BC>AC>AB,在图(3)中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形。(标上字母)
在长32m,宽20m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.
已知:如图,在△ABC中, D是BC上一点,E是AD上一点,且EB=EC,∠ABE=∠ACE. 求证:∠BAE=∠CAE证明:在△AEB和△AEC中∵EB=EC( )∠ABE=∠ACE( ) AE=AE( )∴△AEB≌△AEC( )∴∠BAE=∠CAE( )上面的证明过程是否正确?若认为正确,请在各步后面的括号内填入依据;若认为不正确,重新证明。.
初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:该班共有_____名同学参加这次测验;极差至多是_______分在该频数分布直方图中画出频数折线图若这次测验中,成绩80分以上(不含80分)为优秀,那么该班这次数学测验的优秀率是多少?估计该班数学的平均成绩