为提供节约用水,某市按如下规定每月收取水费,若一户居民每月用水不超过20立方米,则每立方米按3元收费;若超过20立方米,前20立方米收费标准不变,超过部分每立方米按5元收费,若某户居民某月用水x立方米.(1)试用含x的代数式表示这户居民该月应缴的水费(分两种情况).(2)已知该市小李家1月份用水13立方米,2月份用水22立方米,3月份用水17立方米,求他家一季度应缴纳水费多少元?
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C. (1)求抛物线的解析式; (2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标; (3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图,直线y=x-1和抛物线y=x 2+bx+c都经过点A(1,0),B(3,2). (1)求抛物线的解析式; (2)求不等式x2+bx+c<x-1的解集(直接写出答案). (3)设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程)
如图,矩形ABCD,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发沿折线A-B-C向点C运动,同时点Q以lcm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动.(1)问两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的;(2)问两动点经过多长时间使得点P与点Q之间的距离为?若存在,求出运动所需的时间;若不存在,请说明理由.
已如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3) ,B(n,-1).(1)求反比例函数与一次函数的函数关系式;(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;答: (3) 连接AO、BO,求△ABO的面积;
某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元. (1)求甲、乙两种花木每株成本分别为多少元; (2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元,该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?