(本小题满分12分)甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产1百台的生产成本为1万元(总成本固定成本+生产成本),销售收入,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题(1)写出利润函数的解析式(利润销售收入—总成本);(2)甲厂生产多少台新产品时,可使盈利最多?
(本小题10分)如图已知在三棱柱ABC——A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是AA1、BB1、AB、B1C1的中点. (1) 求证:面PCC1⊥面MNQ; (2) 求证:PC1∥面MNQ。
(本小题8分)已知且,求的最小值
(本题10分)如图一边长为48cm的正方形铁皮,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体容器。所得容器的体积V(单位:)是关于截去的小正方形的边长x(单位:)的函数。⑴ 随着x的变化,容积V是如何变化的? ⑵ 截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?
(本题10分)假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如下的统计资料:
由资料知y与x呈线性相关关系.估计当使用年限为10年时,维修费用是多少万元?