某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台.现销售给A地10台,B地8台.已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;(2)若总运费不超过9000元,问共有几种调运方案;(3)求出总运费最低的调运方案及最低的费用.
某教室有4扇编号为a、,b、c、d的窗户和2扇编号为x、y的门,窗户d敞开,其余门和窗户均被关闭.为保持教室空气流通,班长在这些关闭的门和窗户中随机地敞开2扇. (Ⅰ)记“班长在这些关闭的门和窗户中随机地敞开2扇”为事件A,请列出A包含的基本事件; (Ⅱ)求至少有1扇门被班长敞开的概率.
在数列{an}中,a1=,点(an,an+1)(n∈N*)在直线y=x+上 (Ⅰ)求数列{an}的通项公式; (Ⅱ)记bn=,求数列{bn}的前n项和Tn.
已知函数 (1)若函数无零点,求实数的取值范围; (2)若函数在有且仅有一个零点,求实数的取值范围
已知,设记. (1)的解析表达式; (2)若角是一个三角形的最小内角,试求函数的值域
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界. 已知函数,. (1)若函数为奇函数,求实数的值; (2)在(1)的条件下,求函数在区间上的所有上界构成的集合; (3)若函数在上是以为上界的有界函数,求实数的取值范围