已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的极坐标方程为(1)写出点的直角坐标及曲线的直角坐标方程;(2)若为曲线上的动点,求中点到直线(为参数)距离的最小值.
(本小题满分16分)已知函数,(1)若在上的最大值为,求实数的值;(2)若对任意,都有恒成立,求实数的取值范围;(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
(本小题满分16分)已知椭圆的离心率为,一条准线.(1)求椭圆的方程;(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.①若,求圆的方程;②若是l上的动点,求证:点在定圆上,并求该定圆的方程.
(本题满分16分)如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为.(1)设,求证:;(2)欲使的面积最小,试确定点的位置.
(本小题满分14分)若a、b、c是△ABC三个内角A、B、C所对边,且,(1)求;(2)当时,求的值。
(本小题满分14分)如图,斜三棱柱中,侧面底面ABC,侧面是菱形,,E、F分别是、AB的中点.求证:(1)EF∥平面;(2)平面CEF⊥平面ABC.