已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的极坐标方程为(1)写出点的直角坐标及曲线的直角坐标方程;(2)若为曲线上的动点,求中点到直线(为参数)距离的最小值.
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3)。 (1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式; (2)若f(x)的最大值为正数,求a的取值范围。
设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0 求证:(1)a>0,-2<<-1 (2)函数f(x)在(0,1)内有零点。
若a2-a+1<0,求使不等式x2+ax+1>2x+a成立的x的取值范围.
(本小题共14分) 已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率; (II)将表示为m的函数,并求的最大值.
(本小题满分13分)双曲线的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.