已知函数,若存在,且,使得.(Ⅰ)求实数的取值集合;(Ⅱ)若,且函数的值域为,求实数的取值范围.
(本小题满分8分) 某校在高二年级开设了,,三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从,,三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)
(1)求,的值;(2)若从,两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组的概率.
(本小题满分6分)在△中,角,,成等差数列.(1)求角的大小;(2)若,求的值.
已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N∗),数列{bn}的首项, b1=a,bn=an+n2(n≥2,n∈N∗).(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;(3)当a>0时,求数列{an}的最小项.
已知函数f(x)= x/4+ln(x-2)/(x-4),(1)求函数f)x)的定义域和极值;(2)若函数(fx)在区间[a2-5a,8-3a]上为增函数,求实数a的取值范围;(3)函数f(x)的图象是否为中心对称图形?若是请指出对称中心,并证明;若不是,请说明理由.
如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,点B的坐标为(2,0),(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l′(斜率不等于零)与(1)中的轨迹C交于不同的两点E,F(E在B,F之间)试求△OBE与△OBF面积之比的取值范围.