(本小题满分12分)如图,圆:.(Ⅰ)若圆与轴相切,求圆的方程;(Ⅱ)已知,圆与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
(本题12分)在中,已知,判定的形状.
(本题12分)在△ABC中,求证:
(本题10分)a,b,c为△ABC的三边,其面积S△ABC=12,bc=48,b-c=2,求a.
已知定义域为R的函数是奇函数.(1)求的值; (2)证明在上为减函数.(3)若对于任意,不等式恒成立,求的范围.
(本小题满分12分) 已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).(1)求函数h(x)的定义域;(2)判断h(x)的奇偶性,并说明理由;(3)若f(3)=2,求使h(x)>0成立的x的集合.