(10分)选修4-4:坐标系与参数方程.已知曲线的极坐标方程是,设直线的参数方程是,(为参数).(1) 将曲线的极坐标方程转化为直角坐标方程;(2) 设直线与轴的交点是曲线上一动点,求的最大值.
某港口的水深(米)是时间(0≤≤24,单位:小时)的函数,下面是不同时间的水深数据:根据上述数据描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数的图像.(1)试根据以上数据,求出的表达式;(2)一般情况下,船舶航行时,船底离海底的距离不少于4.5米时是安全的,如果某船的吃水深度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,则在港内停留的时间最多不能超过多长时间?(忽略进出港所用的时间)?
如图某地夏天从8~14时用电量变化曲线近似满足函数.(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.
已知函数(,)为偶函数,且其图像上相邻的一个最高点和最低点之间距离为.⑴求的解析式;⑵若,求的值。
如图,是单位圆与轴正半轴的交点,点在单位圆上, ,四边形的面积为(Ⅰ)求的最大值及此时的值;(Ⅱ)设点的坐标为,,在(Ⅰ)的条件下,求
已知函数的一系列对应值如下表:
(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围;