(本小题10分)已知函数的最大值为.(1)求函数的单调递增区间;(2)将的图象向左平移个单位,得到函数的图象,若方程=m在x∈上有解,求实数m的取值范围.
已知数列的前项和为,,,.(Ⅰ)求证:数列是等比数列;(Ⅱ)设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.
设不等式的解集为,.(Ⅰ)证明:;(Ⅱ)比较与的大小,并说明理由.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为。(Ⅰ)写出曲线C1与直线l的直角坐标方程; (Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值。
如图,四边形ABCD内接于⊙,是⊙的直径,于点,平分.(Ⅰ)证明:是⊙的切线(Ⅱ)如果,求.
设,函数,函数,. (Ⅰ)当时,写出函数零点个数,并说明理由;(Ⅱ)若曲线与曲线分别位于直线的两侧,求的所有可能取值.