已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线FM被圆截得的线段的长为c,.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设椭圆上动点P在x轴上方,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
已知函数(1)将写成的形式,并求其图象对称中心的横坐标;(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为,试求角的范围及此时函数的值域.
在直三棱柱ABC-A1B1C1中,∠ABC="90°," AB="BC=1." (1)求异面直线B1C1与AC所成角的大小;(2)若直线A1C与平面ABC所成角为45°, 求三棱锥A1-ABC的体积.
已知点集,其中,,点列在L中,为L与y轴的交点,等差数列的公差为1,。(1)求数列的通项公式;(2)若=,令;试用解析式写出关于的函数。(3)若=,给定常数m(),是否存在,使得 ,若存在,求出的值;若不存在,请说明理由。
在四棱锥中,,,底面,为的中点,.(Ⅰ)求四棱锥的体积;(Ⅱ) 求二面角的大小.
某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予0.96折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取2人. (Ⅰ)求这2人都享受折扣优惠或都不享受折扣优惠的概率; (Ⅱ)设这2人中享受折扣优惠的人数为,求的分布列和数学期望.