在平面直角坐标系xOy中,椭圆C的参数方程 (φ为参数),直线的参数方程 (t为参数) . (I)求C与的普通方程; (II)求过C的右焦点,且平行的直线方程.
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.
设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围.
已知椭圆经过点,离心率为,左右焦点分别为. (1)求椭圆的方程; (2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.
某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率; (2)在样本车辆中,车主是新司机的占10℅,在赔付金额为4000元的样本车辆中,车主是新司机的占20℅,估计在已投保车辆中,新司机获赔金额为4000元的概率.
在直角坐标系 x O y 中,已知点 A 1 , 1 , B 2 , 3 , C 3 , 2 ,点 P x , y 在 ∆ A B C 三边围成的区域(含边界)上,且 O P ⇀ = m A B ⇀ + n A C ⇀ m , n ∈ R
(1)若 m = n = 2 3 ,求 O P ⇀ ; (2)用 x , y 表示 m - n ,并求 m - n 的最大值.