已知椭圆的两个焦点为、,离心率为,直线与椭圆相交于、两点,且满足,,为坐标原点.(1)求椭圆的方程;(2)证明:的面积为定值.
(本小题满分14分)如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1. 将沿EF折起到的位置,使平面与平面BCFE垂直,连结A1B、A1P(如图2).(1)求证:PF//平面A1EB;(2)求证:平面平面A1EB;(3)求四棱锥A1—BPFE的体积.
(本小题满分12分)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n="1," 2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
(本小题满分为12分)如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点,观察对岸的点,测得,,且米.(1)求;(2)求该河段的宽度.
(本题满分12分)已知函数,为实数,.(Ⅰ)若在区间上的最小值、最大值分别为、1,求、的值;(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;(Ⅲ)设函数,试判断函数的极值点个数.
如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,于D,PD与AO的延长线相交于点E,连接CE并延长交圆O于点F,连接AF。(1)求证:B,C,E,D四点共圆;(2)当AB=12,时,求圆O的半径.