(本题12分) 某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?
计算:
在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m. (1)如图1,当m=时, ①求线段OP的长和tan∠POM的值; ②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标; (2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E. ①用含m的代数式表示点Q的坐标; ②求证:四边形ODME是矩形.
将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n]. (1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为 度; (2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值; (3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,一次函数y1=kx+b的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0). (1)求这两个函数的解析式; (2)当x取何值时,y1>y2.