某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为 且过顶点C(0,5)(长度单位:m) (1)直接写出c的值; (2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m 2,求购买地毯需多少元? (3)在拱桥加固维修时,搭建的"脚手架"为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.
已知方程组的解是,则a+b的值为.
已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.求这个二次函数的解析式;点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;在(2)的情况下,求四边形ACQD的面积.
如图1,在矩形ABCD中,AB=2BC,M是AB的中点.直接写出∠BMD与∠ADM的倍数关系;如图2,若四边形ABCD是平行四边形, AB=2BC,M是AB的中点,过C作CE⊥AD与AD所在直线交于点E. ①若∠A为锐角,则∠BME与∠AEM有怎样的倍数关系,并证明你的结论; ②当时,上述结论成立; 当时,上述结论不成立.
已知:关于的方程有两个不相等的实数根.求的取值范围;抛物线:与轴交于、两点.若且直线:经过点,求抛物线的函数解析式;在(2)的条件下,直线:绕着点旋转得到直线:,设直线与轴交于点,与抛物线交于点(不与点重合),当时,求的取值范围.
生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中的纸条按图②方式拉紧,压平后可得到图③中的正五边形(阴影部分表示纸条的反面).将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是;若原长方形纸条(图①)宽为2cm,求(1)中展开后平面图形的周长(可以用三角函数表示).