某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为 且过顶点C(0,5)(长度单位:m) (1)直接写出c的值; (2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m 2,求购买地毯需多少元? (3)在拱桥加固维修时,搭建的"脚手架"为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.
如图所示,某校的校门口,教学楼,图书馆和实验楼分别位于一个长方形的四个顶点处,请你选择适当的位置作为坐标原点,建立平面直角坐标系并描述图中的各个位置.
如图,若观测点的高度为h,观测者视线能达到的最远距离为d,则,其中R是地球半径(通常取6400km).(1)小丽站在海边一块岩石上,眼睛离地面的高度为20m,此时小丽视线能达到的最远距离为多少千米?(2)已知泰山到海边的最近距离是216000m,泰山的海拔高度为1545m,利用计算,判断站在泰山之巅能否看到大海.
为一个整数,试求出自然数n的值.
判断下列各式是否为二次根式.(1);(2);(3);(4);(5).
指出下列各点在坐标平面内所在的位置:A(-3,0),B(-2,-2),C(0,0),D(0,-3),E(-2,3).