(本小题满分12分)(注意:在试题卷上作答无效) 已知定义在上的函数,对任意都有,且是上的增函数. 求证:函数是上的奇函数; 若不等式对任意恒成立,求实数的取值范围.
( 12分)如图,椭圆的方程为,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.(1)求椭圆的方程;(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
(本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米. (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
在数列中,已知.(1)求数列、的通项公式;(2)设数列满足,求的前n项和
( 12分)如图,在多面体中,面,,且,为中点。(1)求证:平面;(2)求平面和平面所成的锐二面角的余弦值。
已知函数(1)求函数的最小值和最小正周期;(2)设的内角A、B、C的对边分别为,且,若向量与向量共线,求的值。