已知数列是各项均为正数的等比数列,且(1)数列的通项公式;(2)设数列满足,求该数列的前n项和.
已知,求函数的值域
已知函数是定义在上的奇函数,当时,, 求⑴; ⑵解不等式.
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求平面BDC与平面DEF的夹角的余弦值; (3)在线段上是否存在一点,使?证明你的结论.
在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和. (1)求的取值范围; (2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
如图,在四棱锥中,底面是矩形,,,AB=2.M为PD的中点.求直线PC与平面ABM所成的角的正弦值;