在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.
已知在时有极大值6,在时有极小值 求的值;并求在区间[-3,3]上的最大值和最小值.
已知曲线上一点,求: (1)点处的切线方程; (2)点处的切线与轴、轴所围成的平面图形的面积。
设:实数满足,其中,命题:实数满足 (1)若,且为真,求实数的取值范围 (2)若是的充分不必要条件,求实数的取值范围
已知函数的定义域为集合A,函数的定义域为集合B (1)当时,求 (2)若,求实数的值
已知函数,且 (1)求的值 (2)判断在上的单调性,并利用定义给出证明