A , B , G , F 如图, A , B , C , D 四点在同一圆上, A D 的延长线与 B C 的延长线交于 E 点,且 E C = E D .
(I)证明: C D / / A B ; (II)延长 C D 到 F ,延长 D C 到 G ,使得 E F = E G ,证明:四点共圆.
已知数列的前项和为,且,数列满足,且点在直线上. (Ⅰ)求数列、的通项公式; (Ⅱ)求数列的前项和; (Ⅲ)设,求数列的前项和.
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点. (1)证明:; (2)判断并说明PA上是否存在点G,使得EG∥平面PFD; (3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的平面角的余弦值.
已知命题p:x1和x2是方程的两个实根,不等式对任意实数恒成立;命题q:不等式有解,若命题p是真命题,命题q是假命题,求a的取值范围.
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损. (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
已知函数f(x)=cos(2x+)+sin2x (1)求函数f(x)的单调递减区间及最小正周期; (2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=,f()=-,求b.