为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查.图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项,根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角的度数;(2)该市 2012 年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市 2014 年共有 50000 名学生,请你估计该市2014年参加社团的学生人数.
如图,P为等腰△ABC的顶角A的外角平分线上任一点,连接PB,PC.(1)求证:PB+PC>2AB.(2)当PC=2,PB=,∠ACP=45°时,求AB的长.
如图是由边长都是1的小正方形组成的网格.请以图中线段BC为边,作△PBC,使P在格点上,并满足:(1)图甲中的△PBC是直角三角形,且面积是△ABC面积2倍;(2)图乙中的△PBC是等腰非直角三角形.
分解因式:(1)(2a+1)2-(2a+1)(-1+2a)(2)4(x+y)2-(x-y)2
计算: (1)已知:(x+2)2=25,求x; (2)计算:
有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.