已知椭圆的离心率.直线x=t(t>0)与曲线E交于不同的两点,,以线段为直径作圆,圆心为.(1)求椭圆的方程;(2)若圆与y轴相交于不同的两点A,B,求△ABC的面积的最大值.
数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*).(1)求数列{an}的通项an;(2)求数列{nan}的前n项和Tn.
设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{an}和{bn}的通项公式;(2)设cn=,求数列{cn}的前n项和Tn.
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求.
Sn是数列{an}的前n项和,an=,求Sn.
某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…….以Tn表示到第n年末所累计的储备金总额.(1)写出Tn与Tn-1(n≥2)的递推关系式;(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.