(满分12分)渔船甲位于岛屿的南偏西方向处,且与岛屿相距海里,渔船乙以海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用了2小时追赶上渔船乙.(Ⅰ)求渔船甲的速度;(Ⅱ)求的值.
(本小题满分15分) 已知以点为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点。 (Ⅰ)求证:△AOB的面积为定值; (Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若,求圆C的方程; (Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求的最小值及此时点P的坐标。
(本小题满分15分) 设函数,(其中是函数的导函数) (Ⅰ)求函数的极大值; (II)若时,恒有成立,试确定实数a的取值范围。
(本小题满分分) (Ⅰ)若是公差不为零的等差数列前n项的和,且成等比数列,求数列的公比; (II)设是公比不相等的两个等比数列,,证明数列不是等比数列。
(本小题满分分) 在平面直角坐标系xoy中,已知四边形OABC是平行四边形,,点M是OA的中点,点P在线段BC上运动(包括端点),如图 (Ⅰ)求∠ABC的大小; (II)是否存在实数λ,使?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由。
(本小题满分14分)在中,角的对应边分别为,已知,,且. (Ⅰ)求的值; (Ⅱ)求的值.