(满分12分)渔船甲位于岛屿的南偏西方向处,且与岛屿相距海里,渔船乙以海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用了2小时追赶上渔船乙.(Ⅰ)求渔船甲的速度;(Ⅱ)求的值.
(本小题满分13分)袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和.(Ⅰ)求的概率分布;(Ⅱ)求的数学期望与方差.
本小题满分12分)在的展开式中,第3项的系数与倒数第3项的系数之比为.(Ⅰ)求的值;(Ⅱ)展开式的哪几项是有理项(回答项数即可);(Ⅲ)求出展开式中系数最大的项.
(本小题满分12分)若,则,,.在2010年黄冈中学理科实验班招生考试中,有5000人参加考试,考生的数学成绩服.(Ⅰ)在5000名考生中,数学分数在之间的考生约有多少人;(Ⅱ)若对数学分数从高到低的前114名考生予以录取,问录取分数线为多少?
(本小题满分12分)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数是增函数,若p或q为真,p且q为假,求实数a的取值范围.
(本小题满分14分)已知函数,,且对恒成立.(1)求a、b的值;(2)若对,不等式恒成立,求实数m的取值范围.(3)记,那么当时,是否存在区间(),使得函数在区间上的值域恰好为?若存在,请求出区间;若不存在,请说明理由.