(本小题满分12分)若,则,,.在2010年黄冈中学理科实验班招生考试中,有5000人参加考试,考生的数学成绩服.(Ⅰ)在5000名考生中,数学分数在之间的考生约有多少人;(Ⅱ)若对数学分数从高到低的前114名考生予以录取,问录取分数线为多少?
某商场预计全年分批购入每台价值为2 000元的电视机共 3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
已知、、为的三内角,且其对边分别为、、,若. (Ⅰ)求; (Ⅱ)若,求的面积
,若时有极值,求实数的值和的单调区间; 若在定义域上是增函数,求实数的取值范围
已知数列 (1)求数列,的通项公式; (2)求数列的前项和。
某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示).如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价