设各项为正数的数列的前和为,且满足:.等比数列满足:.(Ⅰ)求数列,的通项公式;(Ⅱ)设,求数列的前项的和;(Ⅲ)证明:对一切正整数,有.
在数列中,,且前n项的算术平均数等于第n项的2n-1倍()。(1)写出此数列的前5项;(2)归纳猜想的通项公式,并加以证明。
半径为的球的内接圆柱,问圆柱的底半径与高多大,才能使圆柱的体积最大。
在△ABC中,角A,B,C的对边分别是,且。(1)求的值;(2)若,求的最大值。
求过点(1,2)且与曲线相切的直线方程。
求由抛物线与它在点A(0,-3)和点B(3,0)的切线所围成的区域的面积。