设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足:0<x1<x2<. (1)当x∈(0, x1)时,证明x<f(x)<x1; (2)设函数f(x)的图象关于直线x=x0对称,证明x0<.
已知c>0.设命题P:函数y=cx在R上单调递减;Q:函数在上恒为增函数.若P或Q为真, P且Q为假,求c的取值范围。
已知二次函数满足,且, (1)求; (2)求在上的最大值和最小值。
设函数 (1)将f(x)写成分段函数,在给定坐标系中作出函数的图像; (2)解不等式f(x)>5,并求出函数y= f(x)的最小值。
⊙O1和⊙O2的极坐标方程分别为。 (1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2交点的直线的直角坐标方程。
已知f(x)=2x3+ax2+bx+c在x=-1处取得极值8,又x=2时,f(x) 也取得极值。 (1)求a,b,c的值,写出f(x)的解析式; (2)求f(x)的单调区间。