(本题6分)在3×3的正方形网格中,有一个以格点为顶点的三角形(阴影部分)如图所示,请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)
(1)如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF⊥AG于点F. 求证:AE=BF (2)如图,□ABCD中,的平分线交边于,的平分线交于,交于.若AB=3,BC=5,求EG的长。
(1)计算: (2)先化简,再求值:,其中为整数且.
已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题: (1)当为何值时,? (2)设的面积为(),求与之间的函数关系式; (3)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时的值;若不存在,说明理由.
如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便? (参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2). (1)求m的值和抛物线的解析式; (2)求抛物线的对称轴和顶点坐标; (3)若此抛物线与y轴交于点C,点P是x轴上的一个动点,当点P到C、B两点的距离之和最小时,求出点P的坐标.