(本小题满分16分)设函数f(x)=x2-2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范围.
已知(+3x2)n展开式中各项的系数和比各项的二项式系数和大992.求展开式中系数最大的项.
已知(+)n (n∈N*)的展开式中第5项的系数与第3项的系数之比为10∶1.求展开式中系数最大的是第几项?
求证:3n>(n+2)·2n-1(n∈N*,n>2).
求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.
在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.