某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式.其中,为常数.已知销售价格为元/千克时,每 日可售出该商品千克.(Ⅰ)求的值;(Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
设全集,函数的定义域为A,函数的定义域为B(Ⅰ)求集合与;(Ⅱ)求、
甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。请你根据提供的信息说明:(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
已知数列满足:且.(Ⅰ)求,,,的值及数列的通项公式;(Ⅱ)设,求数列的前项和;
在四棱锥中,,,底面, ,直线与底面成角,点分别是的中点.(1)求二面角的大小;(2)当的值为多少时,为直角三角形.
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G..(Ⅰ)求证:∥;(Ⅱ)求二面角的余弦值;(Ⅲ)求正方体被平面所截得的几何体的体积.