(本题14分)如图所示,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长.(2)当OM多长时,圆形保护区的面积最大?
(本小题满分14分)在中,内角,,的对边分别为,,,且. (1)求角的大小; (2)若,,求的面积.
(本小题满分14分)已知函数,, 其中,是自然对数的底数.函数,. (Ⅰ)求的最小值; (Ⅱ)将的全部零点按照从小到大的顺序排成数列,求证: (1),其中; (2).
(本小题满分13分)如图,已知抛物线,过焦点F任作一条直线与相交于两点,过点作轴的平行线与直线相交于点(为坐标原点). (Ⅰ)证明:动点在定直线上; (Ⅱ)点P为抛物线C上的动点,直线为抛物线C在P点处的切线,求点Q(0,4)到直线距离的最小值.
(本小题满分13分)在四棱锥中,,,平面,直线PC与平面ABCD所成角为,. (Ⅰ)求四棱锥的体积; (Ⅱ)若为的中点,求证:平面平面.
本小题满分13分)设是公比为q的等比数列. (Ⅰ)推导的前n项和公式; (Ⅱ)设q≠1, 证明数列不是等比数列.