(本小题满分12分)在中,设角的对边分别为,且.(1)求角的大小;(2)若,求边的大小.
在直角坐标系中,曲线的参数方程为( 为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数). (Ⅰ)若曲线与曲线只有一个公共点,求的取值范围; (Ⅱ)当时,求曲线上的点与曲线上点的最小距离.
已知C点在圆O直径BE的延长线上,CA切圆O于A点, DC是∠ACB的平分线交AE于点F,交AB于D点. (Ⅰ)求的度数. (Ⅱ)若AB=AC,求AC:BC.
已知函数(为自然对数的底数). (Ⅰ)求函数在上的单调区间; (Ⅱ)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为. (Ⅰ)求椭圆的标准方程; (Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.
如图在圆锥中,已知,⊙O的直径,是弧的中点,为的中点. (Ⅰ)证明:平面平面; (Ⅱ)求二面角的余弦值.