(本小题满分12分)某营养师要为某个儿童预订午餐和晚餐,已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么满足上述营养要求,并且花费最少,应当为儿童分别预定多少个单位的午餐和晚餐?
已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b. (1)求f(x)的振幅、周期,并画出它在一个周期内的图象; (2)说明它可以由函数y=sinx的图象经过怎样的变换得到.
已知函数f(x)=2·sincos-sin(x+π). (1)求f(x)的最小正周期; (2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?
已知sin(3π+θ)=, 求的值.
已知在△ABC中,sinA+cosA=. (1)求sinA·cosA; (2)判断△ABC是锐角三角形还是钝角三角形; (3)求tanA的值.