如图,正三角形的边长为2,分别在三边和上,且为的中点,.(1)当时,求的大小;(2)求的面积的最小值及使得取最小值时的值.
已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.
如图,抛物线关于轴对称,它的顶点在坐标原点,点,,均在抛物线上. (Ⅰ)写出该抛物线的方程及其准线方程; (Ⅱ)当与的斜率存在且倾斜角互补时,求的值及直线的斜率.
命题: “方程表示双曲线” ();命题:定义域为,若命题为真命题,为假命题,求实数的取值范围.
某教室有4扇编号为的窗户和2扇编号为的门,窗户敞开,其余门和窗户均被关闭.为保持教室空气流通,班长在这些关闭的门和窗户中随机地敞开2扇. (Ⅰ)记“班长在这些关闭的门和窗户中随机地敞开2扇”为事件,请列出事件包含的基本事件; (Ⅱ)求至少有1扇门被班长敞开的概率.
在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k. (1)若直线PA平分线段MN,求k的值; (2)当k=2时,求点P到直线AB的距离d,且求的面积.