用长为16米的篱笆,借助墙角围成一个矩形ABCD(如图),在P处有一棵树与两墙的距离分别为a米(0<a<12 )和4米。若此树不圈在矩形外,求矩形ABCD面积的最大值M.
函数的一段图象过点(0,1),如图所示.(1)求函数的表达式;(2)将函数的图象向右平移个单位,得函数的图象,求的最大值,并求出此时自变量x的集合.
如图所示,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3 cm,周期为3 s,且物体向右运动到A点(距平衡位置最远处)开始计时.(1)求物体离开平衡位置的位移x(cm)和时间t(s)之间的函数关系式;(2)求该物体在t=5 s时的位置.
已知向量,,其中,,试计算及的值;求向量与的夹角的正弦值.
如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.(1)求椭圆的离心率;(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.
设函数.(1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.