已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数. (Ⅰ)用表示xn+1;(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知曲线和相交于点A, (1)求A点坐标; (2)分别求它们在A点处的切线方程(写成直线的一般式方程); (3)求由曲线在A点处的切线及以及轴所围成的图形面积。(画出草图)
已知复数z满足(是虚数单位) (1)求z的虚部;(2)若,求.
由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (1)证明:面面; (2)求与所成的角; (3)求面与面所成二面角的余弦值.
已知的展开式中第3项的系数与第5项的系数之比为. (1)求的值;(2)求展开式中的常数项.