如果有穷数列(为正整数)满足条件,,…,,即 (),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”. (1)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项; (2)设是49项的“对称数列”,其中是首项为1,公比为2的等比数列,求各项的和S.
(本题满分12分)在中,为角所对的三边,已知,,.(Ⅰ)求角;(Ⅱ)若,设=,的周长为,求的最大值.
已知,(为参数)(1)当时,解不等式(2)如果当时,恒成立,求的取值范围。
(满分13分)已知,若在区间上的最小值为,求的值。
(本小题满分13分)已知等比数列的公比为,前项和为,且,现若以为首项,以公比作为公差d构造新的等差数列 (1)求通项(2)记,证明
(本小题满分12分)已知且,请求出与的值