过点的直线l将圆分成两段弧,当劣弧所对的圆心角最小时,求直线l的斜率。
已知椭圆的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切. (1)求椭圆标准方程; (2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
已知函数在(1,+∞)上是增函数,且a>0. (1)求a的取值范围; (2)求函数在[0,+∞)上的最大值;
已知双曲线与椭圆有共同的焦点,点在双曲线上. (1)求双曲线的方程; (2)以为中点作双曲线的一条弦,求弦所在直线的方程.
设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.
已知函数. (1)解不等式; (2)若对于,有.求证:.