(本题10分)如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
如图,⊙ O是△ ABC的外接圆,点 O在 BC边上,∠ BAC的平分线交⊙ O于点 D,连接 BD、 CD,过点 D作 BC的平行线与 AC的延长线相交于点 P.
(1)求证: PD是⊙ O的切线;
(2)求证:△ ABD∽△ DCP;
(3)当 AB=5 cm, AC=12 cm时,求线段 PC的长.
某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的 3 5 ,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球 m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润 W(元)与甲种羽毛球进货量 m(筒)之间的函数关系式,并说明当 m为何值时所获利润最大?最大利润是多少?
为提升学生的艺术素养,学校计划开设四门艺术选修课: A.书法; B.绘画; C.乐器; D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?
(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从 A.书法; B.绘画; C.乐器; D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
如图,△ ABC中, D是 BC边上一点, E是 AD的中点,过点 A作 BC的平行线交 BE的延长线于 F,且 AF= CD,连接 CF.
(1)求证:△ AEF≌△ DEB;
(2)若 AB= AC,试判断四边形 ADCF的形状,并证明你的结论.
为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位: m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组
频数
1.2≤ x<1.6
a
1.6≤ x<2.0
12
2.0≤ x<2.4
b
2.4≤ x<2.8
10
请根据图表中所提供的信息,完成下列问题:
(1)表中 a= , b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤ x<2.8范围内的学生有多少人?