观察下列等式: ①==; ②==; ③==﹣;… 回答下列问题: (1)化简:= ; (2)化简:= ;(n为正整数); (3)利用上面所揭示的规律计算: +…++.
如图, AB 是 ⊙O 的直径, C 是 ⊙O 上一点, D 是 AC ̂ 的中点, E 为 OD 延长线上一点,且 ∠CAE=2∠C , AC 与 BD 交于点 H ,与 OE 交于点 F .
(1)求证: AE 是 ⊙O 的切线;
(2)若 DH=9 , tanC= 3 4 ,求直径 AB 的长.
小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离 y(km) 与小王的行驶时间 x(h) 之间的函数关系.
请你根据图象进行探究:
(1)小王和小李的速度分别是多少?
(2)求线段 BC 所表示的 y 与 x 之间的函数解析式,并写出自变量 x 的取值范围.
如图,点 M 和点 N 在 ∠AOB 内部.
(1)请你作出点 P ,使点 P 到点 M 和点 N 的距离相等,且到 ∠AOB 两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.
某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:
女生阅读时间人数统计表
阅读时间 t (小时)
人数
占女生人数百分比
0⩽t<0.5
4
20%
0.5⩽t<1
m
15%
1⩽t<1.5
5
25%
1.5⩽t<2
6
n
2⩽t<2.5
2
10%
根据图表解答下列问题:
(1)在女生阅读时间人数统计表中, m= , n= ;
(2)此次抽样调查中,共抽取了 名学生,学生阅读时间的中位数在 时间段;
(3)从阅读时间在 2~2.5 小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?
计算: 6sin60°- 12 + ( 1 2 ) 0 +| 3 -2018|