(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点到上点的距离的最小值.
如图,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点. (Ⅰ)证明:PE⊥BC(Ⅱ)若==60°,求直线PA与平面PEH所成角的正弦值.
设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n项和.
(本小题满分10分)选修4—5;不等式选讲设函数f(x)=(Ⅰ)画出函数y=f(x)的图像;(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.
(本小题满分10分)选修4—4;坐标系与参数方程 已知直线: (t为参数),圆: (为参数), (Ⅰ)当=时,求与的交点坐标; (Ⅱ)过坐标原点O作的垂线,垂足为A,P为OA的中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线;
已知抛物线C的顶点在原点, 焦点为F(0, 1).(Ⅰ) 求抛物线C的方程;(Ⅱ) 在抛物线C上是否存在点P, 使得过点P的直线交C于另一点Q, 满足PF⊥QF, 且PQ与C在点P处的切线垂直? 若存在, 求出点P的坐标; 若不存在,请说明理由.