已知二次函数的图象如图.(1)求它的对称轴与轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
已知是递增的等差数列,. (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.
已知分别是的三个内角的对边,且满足. (Ⅰ)求角的大小; (Ⅱ)当为锐角时,求函数的值域.
(本小题满分12分) 如图,为椭圆上的一个动点,弦、分别过焦点、,当垂直于轴时,恰好有 (Ⅰ)求椭圆的离心率; (Ⅱ)设. ①当点恰为椭圆短轴的一个端点时,求的值; ②当点为该椭圆上的一个动点时,试判断是否为定值? 若是,请证明;若不是,请说明理由.
(本小题满分12分) 数列的前项和为,若,点在直线上. ⑴求证:数列是等差数列; ⑵若数列满足,求数列的前项和; ⑶设,求证:.
(本小题满分12分)如图,矩形所在平面与平面垂直,,且,为上的动点. (Ⅰ)当为的中点时,求证:; (Ⅱ)若,在线段上是否存在点E,使得二面角的大小为. 若存在,确定点E的位置,若不存在,说明理由.